
Manifold 2.0
A Hardware Description Language for Microfluidic Devices

Nicholas Klassen, Michael Lyons, Michael Prysiazny, Paul Roth, Peter Socha,
Murphy Berzish, Atulan Zaman, and Derek Rayside

Electrical and Computer Engineering
University of Waterloo, Canada

drayside@uwaterloo.ca

Abstract—Manifold is a generic high-level system design lan-
guage designed to resemble modern functional programming lan-
guages. It is intended to be usable in a variety of design domains
that can be conceptualized with components, connectors, ports,
and constraints. Domain-specific backends exist for microfluidic
devices and digital logic circuits.

In Manifold 2.0 we have enhanced both the frontend language
and the microfluidic backend. The syntax of the frontend lan-
guage has been expanded with several useful features, including
a type system, a module system, and tuples as first-class values.
The microfluidic backend has been extended to generate Modelica
code, which can be used to run time-domain simulations in third-
party tools such as MapleSim.

Index Terms—Microfluidics, Design automation, Hardware
description language.

I. INTRODUCTION

The field of microfluidic device engineering currently suf-
fers from a lack of accessible tools for circuit design and
analysis. Engineers currently need to develop systems of
equations that represent their circuits by hand [1]. One must
then manually solve these equations to determine the system’s
viability. This is often limiting because computation time for
simulating each component is significant using techniques
such as finite element analysis, which limits the scalability of
designs. Since there are often complex components involved
in a microfluidic circuit, better computer aided design tools are
required to simulate and verify the systemic behavior of con-
nected components to allow rapid prototyping of designs. With
Manifold, engineers can describe their complete microfluidic
systems in a functional programming style. Manifold converts
this system code into inputs for third-party solver tools, which
can then perform an analysis of the system described in the
code. The Manifold framework was first introduced by Berzish
et. al in [2]. This work follows up on the recent features that
have been added to the toolchain.

The Manifold toolchain begins with a high-level hardware
description language. The engineer writes code in the Manifold
frontend language to describe the desired system. The frontend
language is domain-agnostic and does not make any domain-
related assumptions. When describing a system in the frontend
language, an engineer may choose to omit certain parameters
of their design to have them inferred by Manifold later on in
the toolchain. The Manifold frontend compiler processes the
frontend code to create an intermediate schematic. Like the
frontend language, the schematic format is generic by design,

expressing all systems in terms of nodes, ports, connections,
constraints, and attributes. When needed, domain-specific pa-
rameters can be specified in the frontend language and will be
written into the schematic as object attributes.

All domain-specific processing occurs in a Manifold back-
end compiler, which takes a schematic as input and produces
domain-specific output. Two backend compilers currently exist
for Manifold: a digital circuit backend that generates VHDL
code, and a microfluidics backend that generates SMT2 and
Modelica code. All of our recent work has been on the
microfluidics backend. The goal of the microfluidics backend
is to generate code for multiple third-party solver tools. Code
generation in the SMT2 format and integration with the dReal
satisfiability solver [3] have long been supported features.
Code generation in Modelica for use by the MapleSim simu-
lator is a recently-added feature.

Manifold’s goal is to automate much of the design process,
in particular reducing the need for manual mathematical
modeling and guess-and-check work. Instead of writing out
systems equations by hand, Manifold allows engineers to write
high-level system descriptions using the frontend language.
The Manifold microfluidics toolchain automatically generates
relevant system equations and allows engineers to easily lever-
age third-party analysis tools. The aim is to allow engineers
to verify their designs quickly so that they may iterate more
efficiently.

II. THE MANIFOLD HIGH-LEVEL LANGUAGE

A. Module System

Designing a microfluidic circuit requires common com-
ponents to be made available to the user in the form of
libraries. To facilitate code reuse and sharing we created a
basic module system for Manifold. The standard libraries
for each domain will define APIs for interacting with the
corresponding Manifold backend. We are currently developing
such a library for the microfluidics backend. The Manifold
libraries define primitive nodes that a backend will later
recognize as components. These basic components would be
very difficult or impossible to represent natively in Manifold,
so instead we simply define an interface for the backend
library. Creating modules in Manifold also allows users to
share their circuit designs and have others build on them, a
practice that is common in microfluidics.



The module system new in Manifold 2.0 supports the es-
sential functionality required by a module system, as outlined
by Cardelli [4]. These essential features are described in the
rest of this section. Each module, in this case a file, can
declare functions and values as public — the exports. When
a module imports another module all of the exported values in
the imported module will be accessible. Other programming
languages, such as Simple ML, feature more exotic module
systems, but this additional complexity is not currently ben-
eficial to Manifold. Listing 1 shows a module that exports
several values, as well two fluid nodes that use Nil to denote
no input or output.

public microfluidPort = primitive port Bool;

public tJunction = primitive node (dispersed:
microfluidPort, continuous: microfluidPort
) -> (output: microfluidPort);

public fluidEntry = primitive node (viscosity:
Real) -> (output: microfluidPort);

public fluidExit = primitive node (input:
microfluidPort) -> (Nil);

// Constant that is not exported
MIN_CHANNEL_SIZE = 0.0001;

Listing 1. Exported values in a Manifold file

On import, all exported values are returned by the import
expression. In Manifold all language constructs are expres-
sions, and imports are no exception. This differs from how
imports are treated as statements in many other programming
languages, even in other functional languages like Haskell and
OCaml, imports do not return a value. Import expressions al-
low the exported values of a module to be scoped by assigning
the result of the expression to a variable. The imported values
are then referenced as properties of that variable, see Listing 2.
A module effectively becomes, and is used as, a record data
type. Manifold’s import style is similar to a module syntax
for Scheme proposed by Curtis and Rauen [5]. Their module
system used a function called access to reference the values
exported by another module. They also proposed a function
called open that would reduce the verbosity of qualifying
access to a module’s exported values, by adding the argument’s
exported values to the current lexical scope. Manifold does not
have a similar construct.

mf = import "microfluidics";
mf::microfluidPort in = mf.entryPort(viscosity

=2.0);

Listing 2. A module imported into a Manifold file

B. Type System

Many user errors in Manifold 1.0 resulted in errors during
backend compilation. It is very difficult to determine what
the source of the problem was when an error is discovered
this late in the compilation process. Manifold 2.0 includes a
static type checking system to increase the percentage of bugs
found during the compilation stage, when more information
can be communicated to the user about their error. Similar

to typedefs in the C programming language, Manifold allows
users to define and import type aliases. Variables can also be
annotated with a specific type. Upon compilation, Manifold
performs static type checking on all expressions, inferring the
type of a variable when it is not explicitly defined.

The type system demonstrated in Listing 3 is Manifold 2.0’s
structural typing system. Structural type systems were created
to remove some of the issues with nominal type systems [6]. In
a structural type system, a type A is compatible with another
type B if for every feature in A there is a compatible feature
in B. Unlike nominal type systems, structural type systems
allow for sub and supertypes to be defined without modifying
the original type. This allows for complex derived types in
Manifold that can extend the provided standard libraries.

Manifold allows the assignment of subtype values to a
variable declared with a supertype of that value, but not vice-
versa. However, tuple types are the exception to this rule.
Tuples are considered compatible if the signatures of two
tuples match by comparing the fields of the tuples. Some
structural typing systems will allow assignment to a type with
a subset of the source’s fields. In Manifold, tuples are often
used to describe components, and we expect it will usually
be a logical error to allow fields of a component be lost in a
cast. As a result, this feature of structural typing is omitted to
prevent user errors.

// Type definitions
Type Fluid = Int;
Type Pump = (f: Fluid, control: (on: Bool));
Type DoublePump = (first: Pump, second: Pump);

// Variable declarations
DoublePump p;

// Basic structural typing
p1 = (fluid=1, control=(on=true));
(fluid: Int, control: (on: Bool)) p2 = p1;
p2 = (first=p1, second=p2);

Listing 3. Example of types in a Manifold file

C. Improvements to Tuples

Other work on the Manifold language was dedicated to
improving the programmer’s experience of using tuples in
Manifold. Tuples are used extensively in Manifold and their
fields could previously only be accessed using numeric indices.
This was not semantically meaningful to a user, and made the
usage of tuples confusing. One way we improved the usage of
tuples was by extending Manifold with the ability to unpack
tuple fields. Unpacking of a tuple’s fields is a common feature
of functional programming languages, and involves declaring
variables using a tuple on the left-hand side of an assignment
expression. We also added named fields to tuples, inspired
by Python’s NamedTuple class. Naming fields means that a
programmer can refer to a field of a tuple using an index or
the name of that field. Named fields increase the readability
of Manifold and helps users of the language coming from
languages like C that offer this functionality with structs or a



similar data type. The new tuple language features are shown
in Listing 4.

mf = import "microfluidics";

// Use unpacking to do parallel assignment
(waterViscosity, oilViscosity) = (1.002,

250.0);

makeTJunction = (Nil) -> (output: mf::
microfluidPort, dispersed: mf::
microfluidPort, continuous: mf::
microfluidPort) {

continuous = mf.fluidEntry(viscosity=
waterViscosity);

dispersed = mf.fluidEntry(viscosity=
oilViscosity);

output = mf.tJunction(output=output,
dispersed=dispersed, continuous=continuous
);

};

tJunctionChannels = makeTJunction();
// Access a field on the return value using

the named attribute
mf.fluidExit(tJunctionChannels.output);

Listing 4. Examples of new tuple features

III. THE MANIFOLD MICROFLUIDICS BACKEND

A. Modelica Code Generation and MapleSim Integration

Modelica is an open-source and multi-domain modelling
language that can be used to create and simulate models of
a system. [7][8] Manifold 1.0’s SMT2 code generation and
dReal integration are suitable for determining a system’s basic
viability, but the techniques are insufficient for analysis in
greater depth. A list of SMT2 equations can be evaluated
for the basic feasibility of a system, but they do not create a
complete model of the system. Generating Modelica code was
of interest to circuit designers because it allows the backend to
create simulations of the synthesized model. Modelica models
are more expressive than SMT2 equations and can simulate
how the system will behave with time.

Modelica is an open standard, and there are many software
frontends that support it. We chose to integrate Manifold with
MapleSim, a proprietary simulator developed by MapleSoft.
MapleSim offers a Java API called OpenMaple, allowing it to
be called programmatically by Manifold.

Modelica models for MapleSim are straightforward to gen-
erate from a Manifold schematic. A MapleSim model is a list
of design components that are connected to each other using
their ports. The Manifold schematic format also has concepts
of nodes, ports, and connections, allowing a simple mapping
between the two formats. To identify the type of a component,
the Manifold microfluidics backend relies on the attributes
of the nodes. On top of the core Modelica code, MapleSim
supports annotations that specify the positions of components
on a CAD interface and the settings of the simulations. The
Manifold microfluidics backend usually cannot infer the values

of these annotations from the schematics alone and instead
tries to fill in the values with reasonable defaults.

A Modelica model can list components and their types (e.g.
rectangular pipes, T-junctions, fluid exit points), but it does
not contain specific domain knowledge or physical equations
that describe how exactly these component works. Instead,
the inner workings of components are specified in libraries.
MapleSim has libraries with equations for components in
domains fields such as hydraulics and electrical circuits, both
of which have some analogies to microfluidic circuits. A spe-
cialized microfluidics library for MapleSim is currently under
development at the University of Waterloo in collaboration
with the Manifold team.

We have not yet leveraged Modelica code generation for
microfluidics because of a lack of a sufficient MapleSim
library, however, once the models are developed integration
with Manifold will be straightforward. MapleSim representa-
tions for simple fluid components such as rectangular pipes
exist, but models of more complex components such as T-
junctions are still in progress. We have demonstrated the
viability of the Manifold’s backend to generate Modelica code
by using libraries from different domains, such as hydraulics
and electrical circuits. Our results for the Modelica code
generation and simulation of a rectangular pipe are shown in
Figure 1 and Figure 2, respectively.

Fig. 1 MapleSim schematic of a simple rectangular pipe

Fig. 2 MapleSim simulation of a simple rectangular pipe



B. Inferencing with Incomplete Descriptions

With Manifold’s existing SMT2 code generation, engineers
can specify all the relevant details of their microfluidic devices
and delegate determining if the system is viable to Manifold.
When engineers are unsure of a value using the current
methodologies they make a guess and manually check its
validity. A common engineering use case is that the engineer
is unsure of the values of one or more design parameters and
is interested in finding an acceptable range. To accommodate
this workflow, Manifold now allows certain attribute values to
be left unspecified, and it becomes the responsibility of the
backend to find a suitable value.

Manifold 2.0 allows designers to opt out of specifying a
value for an attribute using the value infer instead of a
concrete value. Inferred values are noted in the intermediate
schematics as being inferred so that a Manifold backend can
recognize that there is a missing value. By the end of a
successful run, the backend will have populated all inferred
variables with values.

The microfluidics backend begins the process of resolving
inferred values by generating SMT2 equations and querying
dReal for a solution. If dReal returns that the system of
equations is unsatisfiable, Manifold notifies the user and asks
the user to change the design. If dReal is unable to prove the
system of equations is unsatisfiable, it outputs a range of values
for the inferred variables to be further tested. The microfluidics
backend parses the dReal outputs and chooses values within
the given ranges for the unspecified variables. The process of
choosing an acceptable value from within the range given by
dReal is still a matter of guessing, and a more sophisticated
algorithm would offer a beneficial improvement over a random
search. Once values have been assigned to all the inferred
variables in the schematic, the backend generates Modelica
code. The backend invokes MapleSim using the OpenMaple
API to simulate the behaviour of the generated models. If the
simulation is not successful, the backend can select different
values for the inferred variables and reattempt the simulation.

IV. RELATED WORK

Manifold inherits from the mature research area in software
engineering of design automation and hardware description
languages. Automated synthesis of VLSI has had significant
contribution to the development of silicon devices over the
last few decades [9]. There has been some work on automated
synthesis in the area of microfluidics. MHDL, for example, is a
language for describing microfluidic circuits in a modular way,
and the synthesis program treats the microfluidic circuit similar
to an FPGA [10]. The expressiveness of Manifold is more
generic than that of MHDL, and the underlying complexity
behind the components is hidden from the programmer in
the domain specific backends. The introductory publication of
Manifold [2], has more citations of related work in the domain
of microfluidics.

In the realm of synthesis, a new paradigm in design au-
tomation is “Approximate hardware design”. Axilog is a tool

introduced in [11], which describes a procedure for approxi-
mating design parameters using relaxibility inference analysis.
This is different from Manifold’s synthesis framework because
the synthesis in Manifold happens using dReal, which is a
combinatorial approach of equation solving using boolean
satisfiability. In contrast, Axilog employs an algorithmic and
interactive optimization technique for synthesis.

V. FUTURE WORK

A. Manifold Language

Microfluidic circuits often have identical components that
are used repeatedly. We would like to add looping constructs
to Manifold, either by creating a macro system or by creating
built-in Manifold functions. A looping function would take a
component as a parameter and then repeat an action on that
component a number of times, such as connecting it to other
components. This feature in Manifold would not only prevent
the programmer from repeating code, but would also allow a
programmer’s design to scale up to a number of components
that would not be feasible to write by hand. We also intend for
programmers to be able to specify parameters for components,
such as a T-junction with n branches.

B. CEGAR Loop

The Manifold backend’s toolchain flow has so far been
entirely linear. The verification workflow is only run once
and the simulation results from MapleSim are returned to
the programmer, not evaluated by Manifold. This workflow
can be enhanced by creating a feedback loop. By interpreting
MapleSim’s outputs, the Manifold backend can determine
how successful the simulation was relative to the engineer’s
requirements. Based on these results, the backend would revisit
the systems of SMT2 equations it generated earlier. New
values from within dReal’s output ranges could be chosen
for the next MapleSim generation. This process will be re-
peated until the validity of the system is certain to within a
desired threshold. Another way the MapleSim results can be
used is in constraining the values of inferred parameters to
smaller ranges, and running dReal again on the increasingly
constrained system.

This process is called a CEGAR loop. CEGAR stands
for “counterexample-guided abstraction refinement” [12]. The
principle is that when a system fails a satisfiability test or
simulation, the failed system serves as an example of what a
successful system is not. The counterexample helps reduce the
plausible ranges for the system parameters. Given enough runs
of a CEGAR loop, the ranges of inferred variables is within
a margin that a prototype can feasibly be built.

C. COMSOL Code Generation

COMSOL Multiphysics (“COMSOL”) [13] is a powerful
and proprietary simulator and finite element analyzer [14]. It
supports add-ons for a wide variety of domains, including
fluid mechanics. We are interested in applying COMSOL
because it promises a more deep and thorough simulation of
the microfluidic devices than what MapleSim is capable of.



COMSOL has a Java API, so it should be possible to integrate
it into Manifold’s existing Java codebase and have it be called
automatically.

We would like to add COMSOL simulation as another
verification step to be run after the CEGAR loop described
previously. COMSOL is much slower and much more thor-
ough than dReal or MapleSim, so it is impractical to include
in the main analysis loop. However, a COMSOL simulation
would give a much higher degree of confidence in the validity
of a design.

VI. CONCLUSION

We have made significant progress with Manifold 2.0 in
turning Manifold into a powerful and usable toolchain for
microfluidic device engineering. We have expanded the syntax
of the frontend language, added Modelica code generation to
the microfluidics backend, and laid the framework for future
advanced features such as automated design refinement.

Due to Manifold’s highly modular nature, new backend
compilers can easily be created and substituted into the
toolchain we created. Manifold has potential to be a toolchain
not just for microfluidics, but for other engineering domains
as well.

REFERENCES

[1] T. Thorsen, S. J. Maerki, and S. R. Quake, “Microfluidic
large-scale integration,” Science, vol. 298, no. 5593, pp.
580–584, Oct. 2002.

[2] M. Berzish, A. Khan, A. Zaman, V. Ganesh, and D. Ray-
side, “Manifold: An SMT-Based Declarative Language
for Electronic and Microfluidic Design Synthesis,” in
Proceedings of the NRC/IBM Centre for Advanced Stud-
ies Conference (CASCON), H. Müller and V. Onut, Eds.,
Toronto, Ontario, Canada, Nov. 2016.

[3] S. Gao, S. Kong, and E. Clarke, “dReal: An SMT Solver
for Nonlinear Theories of the Reals,” in Proceedings of
the Conference on Automated Deduction, 2013.

[4] L. Cardelli, “Program fragments, linking, and
modularization,” in Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’97. New York,
NY, USA: ACM, 1997, pp. 266–277. [Online]. Available:
http://doi.acm.org/10.1145/263699.263735

[5] P. Curtis and J. Rauen, “A module system for scheme,”
in Proceedings of the 1990 ACM Conference on LISP
and Functional Programming, ser. LFP ’90. New York,
NY, USA: ACM, 1990, pp. 13–19. [Online]. Available:
http://doi.acm.org/10.1145/91556.91573

[6] J. Gil and I. Maman, “Whiteoak: Introducing structural
typing into java,” in Proceedings of the 23rd ACM
SIGPLAN Conference on Object-oriented Programming
Systems Languages and Applications, ser. OOPSLA ’08.
New York, NY, USA: ACM, 2008, pp. 73–90. [Online].
Available: http://doi.acm.org/10.1145/1449764.1449771

[7] Maplesoft, “Maplesim - high performance phyical
modelling and simulation,” http://www.maplesoft.com/
products/maplesim/, 2016, accessed: 2016-04-02.

[8] Modelica and the Modelica Association, “Modelica,”
2016. [Online]. Available: https://www.modelica.org/

[9] C. Mead and L. Conway, Introduction to VLSI Systems.
Addison-Wesley, 1980.

[10] J. McDaniel, A. Baez, B. Crites, A. Tammewar, and
P. Brisk, “Design and verification tools for continuous
fluid flow-based microfluidic devices,” in 18th Asia
and South Pacific Design Automation Conference,
ASP-DAC. Yokohama, Japan: IEEE, Jan. 2013, pp.
219–224. [Online]. Available: http://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=6507004

[11] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park,
A. Nagendrakumar, S. Sethuraman, K. Ramkrishnan,
N. Ravindran, R. Jariwala, A. Rahimi, H. Esmaeilzadeh,
and K. Bazargan, “Axilog: Language support for approx-
imate hardware design,” in 2015 Design, Automation Test
in Europe Conference Exhibition (DATE), March 2015,
pp. 812–817.

[12] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
Counterexample-Guided Abstraction Refinement. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp.
154–169. [Online]. Available: http://dx.doi.org/10.1007/
10722167 15

[13] C. Inc., “Comsol multiphysics modelling software,”
2016. [Online]. Available: https://www.comsol.com/

[14] J. Reddy, An Introduction to the Finite Element Method
(Third ed.). McGraw-Hill, 2006.


